Leetcode[5] Longest Palindromic Substring
14 Dec 2015###Task1 Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring.
###Java ####O(n2) time and O(1) space
public class Solution {
public String longestPalindrome(String s) {
int start = 0;
int end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expand(s, i, i);
int len2 = expand(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
public int expand(String s, int start, int end) {
int l = start;
int r = end;
while (l >= 0 && r <= s.length() - 1 && s.charAt(l) == s.charAt(r)) {
l--;
r++;
}
return r - l - 1;
}
}
####O(n2) space
public class Solution {
public String longestPalindrome(String s) {
if (s == null || s.length() == 0) return "";
int length = s.length();
int maxLen = 0;
String result = "";
boolean[][] record = new boolean[length][length];
for (int i = length-1; i >= 0; i--) {
for (int j = i; j < length; j++) {
if (s.charAt(i) == s.charAt(j) && ((j - i < 2) || (record[i+1][j-1]))) {
record[i][j] = true;
if (maxLen < (j - i + 1)) {
maxLen = j - i + 1;
result = s.substring(i, j + 1);
}
}
}
}
return result;
}
}
###Points
- DP
- Note: when we expand, there are 2(n - 1) starting points.