Leetcode[152] Maximum Product Subarray
13 Nov 2015###Task1 Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6.
###Python
class Solution(object):
def maxProduct(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if not nums or len(nums) == 0:
return 0
glob = nums[0]
locMin = nums[0]
locMax = nums[0]
for num in nums[1:]:
locMinTemp = locMin
locMin = min(num, locMin * num, locMax * num)
locMax = max(num, locMax * num, locMinTemp * num)
glob = max(glob, locMax)
return glob
###Java
public class Solution {
public int maxProduct(int[] nums) {
//brute force
if (nums == null || nums.length == 0) {
return 0;
}
int global = nums[0];
int localMin = nums[0];
int localMax = nums[0];
for (int i = 1; i < nums.length; i++) {
int temp = localMax;
localMax = Math.max(Math.max(localMax * nums[i], nums[i]), localMin * nums[i]);
localMin = Math.min(Math.min(localMin * nums[i], nums[i]), temp * nums[i]);
global = Math.max(global, localMax);
}
return global;
}
public static void main(String[] args) {
Solution sol = new Solution();
int[] nums = {2, 3, -2, 4};
System.out.println(sol.maxProduct(nums));
}
}
###Points
这道题跟Maximum Subarray模型上和思路上都比较类似,还是用一维动态规划中的“局部最优和全局最优法”。这里的区别是维护一个局部最优不足以求得后面的全局最优,这是由于乘法的性质不像加法那样,累加结果只要是正的一定是递增,乘法中有可能现在看起来小的一个负数,后面跟另一个负数相乘就会得到最大的乘积。不过事实上也没有麻烦很多,我们只需要在维护一个局部最大的同时,在维护一个局部最小,这样如果下一个元素遇到负数时,就有可能与这个最小相乘得到当前最大的乘积和,这也是利用乘法的性质得到的