Leetcode[120] Triangle

###Task1 Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

###Python ####O(n2) space

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
        depth = len(triangle)
        dp = [[0 for i in range(depth)] for j in range(depth)]
        for i in range(depth)[::-1]:
            for j in range(i + 1):
                if i == depth - 1:
                    dp[i][j] = triangle[i][j]
                else:
                    dp[i][j] = min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle[i][j]
        return dp[0][0]

####O(n) space

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
        depth = len(triangle)
        dp = triangle[depth - 1]
        for i in range(depth - 1)[::-1]:
            for j in range(i + 1):
                dp[j] = min(dp[j], dp[j + 1]) + triangle[i][j]
        return dp[0]

###Java

public class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        if (triangle == null || triangle.size() == 0) {
            return -1;
        }
        int depth = triangle.size();

        int[][] f = new int[depth][depth];
        for (int i = 0; i < depth; i++) {
            f[depth - 1][i] = triangle.get(depth - 1).get(i);
        }
        
        for (int i = depth - 2; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                f[i][j] = Math.min(f[i + 1][j], f[i + 1][j + 1]) + triangle.get(i).get(j);
            }
        }
        
        return f[0][0];
    }
}

###Points

每个元素需要维护一次,总共有1+2+…+n=n*(n+1)/2个元素,所以时间复杂度是O(n^2)